wprowadź własne kryteria wyszukiwania książek: (jak szukać?)
Twój koszyk:   0 zł   zamówienie wysyłkowe >>>
Strona główna > opis książki
English version
Książki:

polskie
podział tematyczny
 
anglojęzyczne
podział tematyczny
 
Newsletter:

Zamów informacje o nowościach z wybranego tematu
 
Informacje:

o księgarni

koszty wysyłki

kontakt

Cookies na stronie

 
Szukasz podpowiedzi?
Nie znasz tytułu?
Pomożemy Ci, napisz!


Podaj adres e-mail:


możesz też zadzwonić
+48 512 994 090

ATTOSECOND AND XUV SPECTROSCOPY


SCHULTZ TH. VRAKKING M.

wydawnictwo: VCH, 2014, wydanie I

cena netto: 791.90 Twoja cena  752,31 zł + 5% vat - dodaj do koszyka

Attosecond and XUV Spectroscopy

This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities. With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation. Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments. The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.


List of Contributors XIII

1 Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy 1 Marc Vrakking 1.1 Introduction 1 1.2 The Emergence of Attosecond Science 2 1.2.1 Attosecond Pulse Trains and Isolated Attosecond Pulses 3 1.2.2 Characterization of Attosecond Laser Pulses 4 1.2.3 Experimental Challenges in Attosecond Science 5 1.2.4 Attosecond Science as a Driver for Technological Developments 6 1.3 Applications of Attosecond Laser Pulses 7 1.4 Ultrafast Science Using XUV/X-ray Free Electron Lasers 9 1.5 The Interplay between Experiment and Theory 11 1.6 Conclusion and Outlook 12 References 13 Part One Laser Techniques 17

2 Ultrafast Laser Oscillators and Amplifiers 19 Uwe Morgner 2.1 Introduction 19 2.2 Mode-Locking and Few-Cycle Pulse Generation 20 2.3 High-Energy Oscillators 23 2.4 Laser Amplifiers 25 References 29

3 Ultrashort Pulse Characterization 37 Adam S. Wyatt 3.1 Motivation: Why Ultrafast Metrology? 37 3.1.1 Ultrafast Science: High-Speed Photography in the Extreme 38 3.2 Formal Description of Ultrashort Pulses 42 3.2.1 Sampling Theorem 45 3.2.2 Chronocyclic Representation of Ultrafast Pulses 46 3.2.3 Space-Time Coupling 46 3.2.4 Accuracy, Precision and Consistency 49 3.3 Linear Filter Analysis 51 3.4 Ultrafast Metrology in the Visible to Infrared 53 3.4.1 Temporal Correlations 53 3.4.2 Spectrography 55 3.4.3 Sonography 60 3.4.4 Tomography 60 3.4.5 Interferometry 63 3.5 Ultrafast Metrology in the Extreme Ultraviolet 73 3.5.1 Complete Characterization of Ultrashort XUV Pulses via Photoionization Spectroscopy 75 3.5.2 XUV Interferometry 81 3.6 Summary 85 References 85

4 Carrier Envelope Phase Stabilization 95 Vincent Crozatier 4.1 Introduction 95 4.2 CEP Fundamentals 96 4.2.1 Time Domain Representation 96 4.2.2 Frequency Domain Representation 97 4.3 Stabilization Loop Fundamentals 99 4.3.1 The Noisy Source 99 4.3.2 Noise Detection 100 4.3.3 Open-Loop Noise Analysis 101 4.3.4 Feedback 102 4.3.5 Closed-Loop Noise Analysis 103 4.4 CEP in Oscillators 104 4.4.1 Oscillators Peculiarities 105 4.4.2 CEP Detection 107 4.4.3 Actuation 110 4.5 CEP in Amplifiers 115 4.5.1 Amplifier Peculiarities 116 4.5.2 CEP Detection 119 4.5.3 Actuation 123 4.5.4 Feedback Results 124 4.5.5 Parametric Amplification 126 4.6 Conclusion 129 References 129

5 Towards Tabletop X-Ray Lasers 135 Philippe Zeitoun, Eduardo Oliva, Thi Thu Thuy Le, Stephane Sebban, Marta Fajardo, David Ros, and Pedro Velarde 5.1 Context and Objectives 135 5.2 Choice of Plasma-Based Soft X-Ray Amplifier 137 5.2.1 Basic Aspects of High Harmonic Amplification 138 5.2.2 Basic Aspects of Plasma Amplifiers 140 5.3 2D Fluid Modeling and 3D Ray Trace 141 5.3.1 ARWEN Code 142 5.3.2 Model to Obtain 2D Maps of Atomic Data 143 5.4 The Bloch--Maxwell Treatment 149 5.5 Stretched Seed Amplification 157 5.6 Conclusion 170 References 171 Part Two Theoretical Methods 177

6 Ionization in Strong Low-Frequency Fields 179 Misha Ivanov 6.1 Preliminaries 179 6.2 Speculative Thoughts 179 6.3 Basic Formalism 181 6.3.1 Hamiltonians and Gauges 181 6.3.2 Formal Solutions 182 6.4 The Strong-Field Approximation 184 6.4.1 The Volkov Propagator and the Classical Connection 185 6.4.2 Transition Amplitudes in the SFA 186 6.5 Strong-Field Ionization: Exponential vs. Power Law 189 6.5.1 The Saddle Point Approximation and the Classical Connection 190 6.6 Semiclassical Picture of High Harmonic Generation 195 6.7 Conclusion 198 References 199

7 Multielectron High Harmonic Generation: Simple Man on a Complex Plane 201 Olga Smirnova and Misha Ivanov 7.1 Introduction 201 7.2 The Simple Man Model of High Harmonic Generation (HHG) 203 7.3 Formal Approach for One-Electron Systems 205 7.4 The Lewenstein Model: Saddle Point Equations for HHG 209 7.5 Analysis of the Complex Trajectories 214 7.6 Factorization of the HHG Dipole: Simple Man on a Complex Plane 221 7.6.1 Factorization of the HHG Dipole in the Frequency Domain 222 7.6.2 Factorization of the HHG Dipole in the Time Domain 224 7.7 The Photoelectron Model of HHG: The Improved Simple Man 227 7.8 The Multichannel Model of HHG: Tackling Multielectron Systems 231 7.9 Outlook 238 7.10 Appendix A: Supplementary Derivations 241 7.11 Appendix B: The Saddle PointMethod 242 7.11.1 Integrals on the Real Axis 243 7.11.2 Stationary Phase Method 248 7.12 Appendix C: Treating the Cutoff Region: Regularization of Divergent Stationary Phase Solutions 250 7.13 Appendix D: Finding Saddle Points for the Lewenstein Model 251 References 253

8 Time-Dependent Schrodinger Equation 257 Armin Scrinzi 8.1 Atoms and Molecules in Laser Fields 258 8.2 Solving the TDSE 259 8.2.1 Discretization of the TDSE 260 8.2.2 Finite Elements 263 8.2.3 Scaling with Laser Parameters 265 8.3 Time Propagation 266 8.3.1 Runge--Kutta Methods 267 8.3.2 Krylov Subspace Methods 268 8.3.3 Split-Step Methods 269 8.4 Absorption of Outgoing Flux 269 8.4.1 Absorption for a One-Dimensional TDSE 270 8.5 Observables 272 8.5.1 Ionization and Excitation 272 8.5.2 Harmonic Response 274 8.5.3 Photoelectron Spectra 275 8.6 Two-Electron Systems 278 8.6.1 Very Large-Scale Grid-Based Approaches 278 8.6.2 Basis and Pseudospectral Approaches 278 8.7 Few-Electron Systems 282 8.7.1 MCTDHF: Multiconfiguration Time-Dependent Hartree--Fock 283 8.7.2 Dynamical Multielectron Effects in High Harmonic Generation 285 8.8 Nuclear Motion 287 References 290

9 Angular Distributions in Molecular Photoionization 293 Robert R. Lucchese and Danielle Dowek 9.1 Introduction 293 9.2 One-Photon Photoionization in the Molecular Frame 297 9.3 Methods for Computing Cross-Sections 302 9.4 Post-orientation MFPADs 304 9.4.1 MFPADs for Linear Molecules in the Axial Recoil Approximation 304 9.4.2 MFPADs forNonlinearMolecules in the Axial Recoil Approximation 306 9.4.3 Breakdown of the Axial Recoil Approximation Due to Rotation 308 9.4.4 Breakdown of the Axial Recoil Approximation Due to Vibrational Motion 309 9.4.5 Electron Frame Photoelectron Angular Distributions 309 9.5 MFPADs from Concurrent Orientation in Multiphoton Ionization 310 9.6 Pre-orientation or Alignment, Impulsive Alignment 314 9.7 Conclusions 315 References 315 Part Three High Harmonic Generation and Attosecond Pulses 321

10 High-Order Harmonic Generation and Attosecond Light Pulses: An Introduction 323 Anne L'Huillier 10.1 Early Work, 1987--1993 323 10.2 Three-Step Model, 1993--1994 325 10.3 Trajectories and Phase Matching, 1995--2000 328 10.4 Attosecond Pulses 2001 331 10.5 Conclusion 332 References 335

11 Strong-Field Interactions at Long Wavelengths 339 Manuel Kremer, Cosmin I. Blaga, Anthony D. DiChiara, Stephen B. Schoun, Pierre Agostini, and Louis F. DiMauro 11.1 Theoretical Background 340 11.1.1 Keldysh Picture of Ionization in Strong Fields 340 11.1.2 Classical Perspectives on Postionization Dynamics 341 11.1.3 High-Harmonic Generation 342 11.1.4 Wavelength Scaling of High-Harmonic Cutoff and Attochirp 342 11.1.5 In-situ and RABBITT Technique 344 11.2 Mid-IR Sources and Beamlines at OSU 346 11.2.1 2-mum Source 346 11.2.2 3.6-mum Source 347 11.2.3 OSU Attosecond Beamline 347 11.3 Strong-Field Ionization: The Single-Atom Response 348 11.4 High-Harmonic Generation 350 11.4.1 Harmonic Cutoff and Harmonic Yield 350 11.4.2 Attochirp 352 11.4.3 In-situ Phase Measurement 352 11.4.4 RABBITT Method 355 11.5 Conclusions and Future Perspectives 356 References 356

12 Attosecond Dynamics in Atoms 361 Giuseppe Sansone, Francesca Calegari, Matteo Lucchini, and Mauro Nisoli 12.1 Introduction 361 12.2 Single-Electron Atom: Hydrogen 362 12.3 Two-Electron Atom: Helium 365 12.3.1 ElectronicWave Packets 366 12.3.2 Autoionization: Fano Profile 371 12.3.3 Two-Photon Double Ionization 373 12.4 Multielectron Systems 380 12.4.1 Neon: Dynamics of Shake-Up States 381 12.4.2 Neon: Delay in Photoemission 384 12.4.3 Argon: Fano Resonance 386 12.4.4 Krypton: Auger Decay 388 12.4.5 Krypton: Charge Oscillation 390 12.4.6 Xenon: Cascaded Auger Decay 391 References 393

13 Application of Attosecond Pulses to Molecules 395 Franck Lepine 13.1 Attosecond Dynamics in Molecules 395 13.2 State-of-the-Art Experiments Using Attosecond Pulses 397 13.2.1 Ion Spectroscopy 398 13.2.2 Electron Spectroscopy 402 13.2.3 Photo Absorption 404 13.3 Theoretical Work 405 13.3.1 Electron Dynamics in Small Molecules 405 13.3.2 Electron Dynamics in Large Molecules 406 13.4 Perspectives 413 13.4.1 Molecular Alignment and Orientation 413 13.4.2 Electron Delocalization between DNA Group Junction 414 13.4.3 Similar Dynamics in Water and Ice 416 13.4.4 More 416 13.5 Conclusion 416 References 417

14 Attosecond Nanophysics 421 Frederik Sussmann, Sarah L. Stebbings, Sergey Zherebtsov, Soo Hoon Chew, Mark I. Stockman, Eckart Ruhl, Ulf Kleineberg, Thomas Fennel, and Matthias F. Kling 14.1 Introduction 421 14.2 Attosecond Light-Field Control of Electron Emission and Acceleration from Nanoparticles 425 14.2.1 Imaging of the Electron Emission from Isolated Nanoparticles 426 14.2.2 Microscopic Analysis of the Electron Emission 429 14.3 Few-Cycle Pump-Probe Analysis of Cluster Plasmons 433 14.3.1 Basics of Spectral Interferometry 433 14.3.2 Oscillator Model Results for Excitation with Gaussian Pulses 435 14.3.3 Spectral Interferometry Analysis of Plasmons in Small Sodium Clusters 437 14.4 Measurements of Plasmonic Fields with Attosecond Time Resolution 439 14.4.1 Attosecond Nanoplasmonic Streaking 439 14.4.2 The Regimes of APS Spectroscopy 441 14.4.3 APS Spectroscopy of Collective Electron Dynamics in Isolated Nanoparticles 442 14.4.4 Attosecond Nanoscope 444 14.4.5 Experimental Implementation of the Attosecond Nanoscope 446 14.5 Nanoplasmonic Field-Enhanced XUV Generation 449 14.5.1 Tailoring of Nanoplasmonic Field Enhancement for HHG 450 14.5.2 Generation of Single Attosecond XUV Pulses in Nano-HHG 452 14.6 Conclusions and Outlook 454 References 455 Part Four Ultra Intense X-Ray Free Electron Laser Experiments 463

15 Strong-Field Interactions at EUV and X-Ray Wavelengths 465 Artem Rudenko 15.1 Introduction 465 15.2 Experimental Background 467 15.2.1 What Is a "Strong" Field? 467 15.2.2 Basic Parameters of Intense High-Frequency Radiation Sources 469 15.2.3 Detection Systems 471 15.3 Atoms and Molecules under Intense EUV Light 473 15.3.1 Two-Photon Single Ionization of Helium 473 15.3.2 Few-Photon Double Ionization of Helium and Neon 476 15.3.3 Multiple Ionization of Atoms 485 15.3.4 EUV-Induced Fragmentation of Simple Molecules 487 15.4 EUV Pump--EUV Probe Experiments 493 15.4.1 Split-and-Delay Arrangements and Characterization of the EUV Pulses 493 15.4.2 Nuclear Wave Packet Imaging in Diatomic Molecules 495 15.4.3 Isomerization Dynamics of Acetylene Cations 498 15.5 Experiments in the X-Ray Domain 499 15.5.1 Multiple Ionization of Heavy Atoms: Role of Resonant Excitations 500 15.5.2 Multiphoton Ionization of Molecules Containing High-Z Atoms 506 15.6 Summary and Outlook 510 References 512

16 Ultraintense X-Ray Interactions at the Linac Coherent Light Source 529 Linda Young 16.1 Introduction 529 16.1.1 Comparison of Ultrafast, Ultraintense Optical, and X-Ray Lasers 531 16.1.2 X-Ray Atom Interactions 533 16.2 Atomic and Molecular Response to Ultraintense X-Ray Pulses 536 16.2.1 Nonresonant High-Intensity X-Ray Phenomena 537 16.2.2 Resonant High-Intensity X-Ray Phenomena 540 16.3 Ultrafast X-Ray Probes of Dynamics 543 16.4 Characterization of LCLS Pulses 544 16.5 Outlook 546 References 549

17 Coherent Diffractive Imaging 557 Willem Boutu, Betrand Carre, and Hamed Merdji 17.1 Introduction 557 17.2 Far-Field Diffraction 559 17.2.1 Optical Point of View 559 17.2.2 Born Approximation 561 17.2.3 Resolution 562 17.2.4 Comments on the Approximations 564 17.3 Source Requirements 565 17.3.1 Coherence 565 17.3.2 Signal-to-Noise Ratio 568 17.3.3 Dose 569 17.3.4 Different XUV Sources Comparison 572 17.4 Solving the Phase Problem 572 17.4.1 Oversampling Method 572 17.4.2 Basics on Iterative Phasing Algorithms 574 17.4.3 Implementations of Phase Retrieval Algorithms 577 17.5 Holography 583 17.5.1 Fourier Transform Holography 583 17.5.2 HERALDO 587 17.6 Conclusions 590 References 592 Index 599

624 pages, Hardcover

Po otrzymaniu zamówienia poinformujemy pocztą e-mail lub telefonicznie,
czy wybrany tytuł polskojęzyczny lub anglojęzyczny jest aktualnie na półce księgarni.

 
Wszelkie prawa zastrzeżone PROPRESS sp. z o.o. www.bankowa.pl 2000-2022